Stability estimates for an inverse Steklov problem in a class of hollow spheres
نویسندگان
چکیده
In this paper, we study an inverse Steklov problem in a class of n-dimensional manifolds having the topology hollow sphere and equipped with warped product metric. Precisely, aim at studying continuous dependence warping function defining respect to spectrum. We first show that knowledge spectrum up exponential decreasing error is enough determine uniquely neighbourhood boundary. Second, when functions are symmetric 1/2, prove log-type stability estimate problem. As last result, for corresponding Calderón
منابع مشابه
Stability estimates for an inverse scattering problem at high frequencies
We consider an inverse scattering problem and its near-field approximation at high frequencies. We first prove, for both problems, Lipschitz stability results for determining the low-frequency component of the potential. Then we show that, in the case of a radial potential supported sufficiently near the boundary, infinite resolution can be achieved from measurements of the near-field operator ...
متن کاملA Posteriori Error Estimates for the Steklov Eigenvalue Problem
In this paper we introduce and analyze an a posteriori error estimator for the linear finite element approximations of the Steklov eigenvalue problem. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. Finally, we prove that the vo...
متن کاملThe stability of the solution of an inverse spectral problem with a singularity
This paper deals with the singular Sturm-Liouville expressions $ ell y = -y''+q(x)y=lambda y $ on a finite interval, where the potential function $q$ is real and has a singularity inside the interval. Using the asymptotic estimates of a spectral fundamental system of solutions of Sturm-Liouville equation, the asymptotic form of the solution of the equation (0.1) and the ...
متن کاملStability estimates for the Jacobi inverse eigenvalue problem
We present different stability estimates for the Jacobi inverse eigenvalue problem. First, we give upper bounds expressed in terms of quadrature data and not having weights in denominators. The technique of orthonormal polynomials and integral representation of Hankel determinants is used. Our bounds exhibit only polynomial growth in the problem’s dimension (see [4]). It has been shown that the...
متن کاملEffectivized Holder-logarithmic stability estimates for the Gel'fand inverse problem
We give effectivized Hölder-logarithmic energy and regularity dependent stability estimates for the Gel’fand inverse boundary value problem in dimension d = 3. This effectivization includes explicit dependance of the estimates on coefficient norms and related parameters. Our new estimates are given in L and L∞ norms for the coefficient difference and related stability efficiently increases with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asymptotic Analysis
سال: 2022
ISSN: ['0921-7134', '1875-8576']
DOI: https://doi.org/10.3233/asy-211684